On the diophantine equation x(x + 1)(x + 2)…(x + (m − 1)) =g(y)
نویسندگان
چکیده
منابع مشابه
On the M-xx Equation 1
Some exact solutions of the (2+1)-dimensional integrable classical continuous isotropic Heisenberg spin chain (the M-XX equation) are obtained by using Hirota's method. These solutions are characterized by an integer topological charge.
متن کاملThe Exponential Diophantine Equation 2x + by = cz
Let b and c be fixed coprime odd positive integers with min{b, c} > 1. In this paper, a classification of all positive integer solutions (x, y, z) of the equation 2 (x) + b (y) = c (z) is given. Further, by an elementary approach, we prove that if c = b + 2, then the equation has only the positive integer solution (x, y, z) = (1,1, 1), except for (b, x, y, z) = (89,13,1, 2) and (2 (r) - 1, r + ...
متن کاملOn the Exponential Diophantine Equation ( 4 m 2 + 1
Let m be a positive integer. Then we show that the exponential Diophantine equation (4m2 + 1)x + (5m2 − 1)y = (3m)z has only the positive integer solution (x, y, z) = (1, 1, 2) under some conditions. The proof is based on elementary methods and Baker’s method. Mathematics Subject Classification: 11D61
متن کاملOn the Exponential Diophantine Equation ( 12 m 2 + 1 ) x + ( 13 m 2 − 1 )
Let m be a positive integer. Then we show that the exponential Diophantine equation (12m2 + 1)x + (13m2 − 1)y = (5m)z has only the positive integer solution (x, y, z) = (1, 1, 2) under some conditions. The proof is based on elementary methods and Baker’s method. Mathematics Subject Classification: 11D61
متن کاملON THE DIOPHANTINE EQUATION x m − 1 x − 1 = yn − 1 y − 1
There is no restriction in assuming that y > x in (1) and thus we have m > n. This equation asks for integers having all their digits equal to one with respect to two distinct bases and we still do not know whether or not it has finitely many solutions. Even if we fix one of the four variables, it remains an open question to prove that (1) has finitely many solutions. However, when either the b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae
سال: 2003
ISSN: 0019-3577
DOI: 10.1016/s0019-3577(03)90069-3